
Boundary element methods for acoustics

Problem Sheet Part One

1. Solve the integral equation

y(s) = 1 +

∫ 1

0

s2t2y(t)dt

by the method which was used in Section 2.1 of the notes to obtain the solu-
tion (2.10) to the integral equation (2.5). Check that your solution is correct
by substituting back in the equation. (The correct solution is given at the
end of the problem sheet.)

2. Let ∇x be the usual gradient operator with respect to the components x,
y, and z of x = (x, y, z), i.e.

∇x :=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
.

Let x0 = (x0, y0, z0) be a fixed position vector, and let R denote the distance
between x and x0, i.e.

R := |x− x0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

Show that

∇xR =

(
∂R

∂x
,
∂R

∂y
,
∂R

∂z

)
=

x− x0

R
.

Hence, where G is the 3D fundamental solution as defined in Section 2.2 of
the notes, show that

∇xG(x,x0) = − 1

4π

d

dR

(
eikR

R

)
∇xR = − 1

4π

eikR(ikR− 1)

R3
(x− x0). (1)

Note that this calculation confirms that formula (2.21) in the notes is
correct. Deduce from formula (2.21) and the basic definition of the normal
derivative (1.6) that

∂G(y,x)

∂n(y)
= − 1

4π

eikR(ikR− 1)

R3
(y − x) · n(y),
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where now R denotes R := |x− y|.
Using the fact that the derivative of the Hankel function H

(1)
0 is the Hankel

function −H
(1)
1 , obtain the corresponding explicit expression in the 2D case,

that

∇xG(x,x0) = − i

4

d

dR
H

(1)
0 (kR) ∇xR =

ik

4

H
(1)
1 (kR)

R
(x− x0), (2)

justifying equation (2.39).

3. Equation (2.29) in the notes has been derived on the assumption that
x ∈ D. The corresponding equation (2.30) holds when x ∈ ∂D. The bound-
ary integral equation method is to first solve (2.30) to determine u on the
boundary after which (2.29) is an explicit formula for calculating u through-
out D.

In the case that x is outside D, the corresponding formula that holds is
that

G(x0,x) =

∫

∂D

[
ikβ(y)G(y,x) +

∂G(y,x)

∂n(y)

]
u(y) ds(y). (3)

Write out a justification of (3), copying and modifying the justification for
equation (2.29) in the notes.

Equation (3) is very useful for checking the validity of BEM codes; if the
integral on the right hand side (approximated numerically) is not close to
G(x0,x) when the boundary elements are small, then there must be a prob-
lem with the boundary element scheme or its implementation.

4. An attraction of the boundary integral equation method is the explicit
analytical formulae for the acoustic field in the domain that it gives (e.g.
(2.29) or (2.32) in the notes). One attraction of this is that it enables one to
construct further formulae for derivatives of the solution. In particular, one
can write down a formula for ∇u, the gradient of the pressure u. This is of
considerable interest as the particle velocity is proportional to the gradient
of the pressure, precisely

v = − i

ωρ
∇u.

Moreover, once the velocity and pressure are known then the acoustic in-
tensity vector, Iav, averaged over one period of the time harmonic wave,
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can be calculated by the formula

Iav =
=(ū∇u)

2kρc
,

where ū denotes the complex conjugate of u, = denotes the imaginary part,
and ρ and c are air density and sound speed, respectively.

In the 2D case, when G is given in terms of the Hankel function as in
Section 2.1 of the notes, differentiate equation (2.32), i.e. the equation

u(x) = G(x0,x) +

∫

∂D

G(y,x)
∂u

∂n
(y) ds(y), x ∈ D, (4)

to obtain the explicit expression for ∇u that

∇u(x) =
ik

4

H
(1)
1 (k|x− x0|)
|x− x0| (x−x0)+

ik

4

∫

∂D

H
(1)
1 (k|x− y|)
|x− y| (x−y)

∂u

∂n
(y) ds(y),

(5)
for x ∈ D. (To get this expression you will need to assume that it is fine to
take the derivative under the integral sign (which it is in this instance) and
to use the results from question 2.)

5. In this question we will apply the simple boundary element scheme of
Chapter 3 to the integral equation (2.33) and the representation formula
(2.32).

First, split ∂D into N boundary elements γj, j = 1, ..., N , approximate
∂u/∂n by the constant vj on the jth element, and deduce from (2.32) that

u(x) ≈ G(x0,x) +
N∑

j=1

vj

∫

γj

G(y,x) ds(y), x ∈ D. (6)

and from (2.33) that

0 ≈ G(x0,x) +
N∑

j=1

vj

∫

γj

G(y,x) ds(y), x ∈ ∂D. (7)

Let v denote the vector of unknowns, precisely let v be the length N
column vector with jth entry vj. As in Chapter 3, let xi be some point in
the ith element (for instance its centroid). Show that choosing the constants
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vj, j = 1, ..., N , so that equation (10) is satisfied exactly at the points xi,
i = 1, ..., N , implies that v satisfies the linear system, in matrix form,

Av = −b, (8)

where b denotes the column vector whose ith entry is G(x0,xi), and the
N ×N matrix A has ijth entry

aij :=

∫

γj

G(y,xi) ds(y). (9)

A crude, but not completely useless, approximation for the integrals in
(6) and (9), is to make the approximation that

G(y,x) ≈ G(xj,x)

for y ∈ γj, so that
∫

γj

G(y,x) ds(y) ≈ G(xj,x)

∫

γj

ds(y) = G(xj,x) Aj,

where

Aj :=

∫

γj

ds(y)

is the area of the element γj in 3D, the arc-length of γj in 2D. Making this
approximation in (6) gives the completely explicit formula for u(x) that

u(x) ≈ G(x0,x) +
N∑

j=1

vjAjG(xj,x), x ∈ D. (10)

The same approximation can be made in (9), except when i = j since
G(xj,xj) is undefined (is infinite). A crude, but simple, explicit, and not
completely useless approximation is to take

aij ≈ ãij :=

{
AjG(xj,xi), i 6= j,

0, i = j,
(11)

and so solve
Ãv = −b, (12)

instead of (8), where Ã is the matrix with ijth entry ãij.

[Solution to question 1 is y(s) = 1 + 5
12

s2.]
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Boundary element methods for acoustics

Problem Sheet Part Two: Matlab Problems

Start Matlab up and create a directory bem_matlab. Go to the web site

www.reading.ac.uk/~sms03snc/smart_numerics.html

and download to this directory the six files listed. The files are 5 Mat-
lab functions: G.m, bem_solve.m, circ.m, pressure.m, pressure_exact.m,
plus one short script file bem_complete.m which calls four of these functions
to solve a particular interior problem for the Helmholtz equation. The inte-
rior problem solved is the one described at the beginning of section 2.3.2 of
the notes. The BEM used is the simplest possible, as described in question
5 of part one of the problem sheet. The various functions implement this as
follows:

1. bem_solve.m sets up and solves the matrix equation (12) on the problem
sheet (type help bem_solve in Matlab for the in-built documentation, and
similarly for the other functions);
2. pressure.m then computes the pressure using equation (10);
3. circ.m sets up a boundary element mesh on a circle;
4. pressure_exact.m computes the exact solution in the case when the do-
main is a circle centred on the origin and the point source is at the centre of
the circle, this exact solution being

u(x) = − i

4
H

(1)
0 (kr) + cJ0(kr), (13)

where r = |x| and

c =
i
4
H

(1)
0 (kR)

J0(kR)
,

where R is the radius of the circle.
5. G.m computes the 2D free-field Green’s function.

The script file bem_complete.m uses these functions to solve by BEM a
simple problem of a source at the centre of a circle of radius R, comparing
the BEM solution with the exact solution, and seeing how the relative error
depends on the length, h, of the boundary elements.
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1. Read through the Matlab files and compare with the notes and, in
particular, with question 5 on part one of the problem sheet. Then run
bem_complete.m yourself. Note how the error decreases roughly in propor-
tion with h, so that the BEM appears to be first order convergent, so that
very small elements compared to the wavelength are needed for very small
relative errors.

2. The test of the BEM method and implementation that bem_complete

provides is not very satisfactory because of the radial symmetry of the prob-
lem solved. Because of this symmetry ∂u/∂n is constant on ∂D, so that the
approximation that ∂u/∂n is constant on each element is exact in this case!

To remove the symmetry move the source to x0 = (R/4, 0) so that it is
off centre. Of course, the exact solution above no longer applies. An exact
solution can be computed as an infinite series of Bessel functions, but to test
the code we will use instead the idea from question 3 on part one of problem
sheet. It can be shown (see question 3 and compare with equations (2.32)
and (2.33) in the notes) that, for x outside D,

0 = G(x0,x) +

∫

∂D

G(y,x)
∂u

∂n
(y) ds(y). (14)

Now the function pressure.m computes an approximation to the right hand
side of this equation, which indeed is the pressure when x is inside D. It is a
good test of the BEM scheme and the coding to see if pressure.m predicts
the correct value of 0 when given a point x outside D.

So save a new version of bem_complete.m, as bem_complete2.m, that:

(i) has x0 = (R/4, 0) off-centre;

(ii) has x = (2R, 2R) outside D;

(iii) no longer computes the exact pressure or the relative error but, instead,
tabulates and plots the absolute value of the predicted pressure at x as a
function of h/λ.

[A version of such a program (i.e. a worked solution to this question) is
downloadable from the web site above, as are the solutions to question 3.]
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3. Return to bem_complete.m. Compute, by differentiating the exact solu-
tion (13) above, an expression for ∂u/∂r, and an expression for ∂u/∂n on

∂D. (Note that the derivatives of H
(1)
0 and J0 are −H

(1)
1 and −J1, respec-

tively.) Now carry out the following computational tasks:

(i) Write a function pressure_exact_dr.m which has the same inputs as
pressure_exact.m but calculates, as output, the value of ∂u/∂r at x rather
than u at x.

(ii) Modify bem_complete.m (call the new version bem_complete3.m) so that
it no longer computes u(x) or the exact pressure at x. Instead, get the pro-
gram to compute, for each discretisation (i.e. each value of m in the program),
the difference between the exact value of ∂u/∂n and the values in the vector
v as calculated by bem_solve.m (all these values are identical because of
the rotational symmetry of the problem). The exact value of ∂u/∂n can be
calculated by calling pressure_exact_dr.m (remember that the normal is
directed into D). You should find that the relative errors in the BEM values
of the normal derivative decrease approximately proportionally to h, but are
much larger than the relative errors in the predicted pressure in question 1.

(iii) Write a function pressure_exact_grad.m which has the same inputs
as pressure_exact.m but calculates, as output, the value of the vector ∇u
at x rather than u at x. The function can call pressure_exact_dr.m which
already does most of the work.

(iv) Write a function G_grad.m which has the same inputs as G.m but cal-
culates, as output, the gradient of G, i.e. ∇xG(x,y) = ∇xG(y,x), rather
than the value of G itself. Write a function pressure_grad.m which has
the same inputs as pressure_grad.m but calculates, as output, a BEM ap-
proximation to ∇u(x) rather than u(x). (To get an approximation for ∇u
take the gradient of the approximation for u, equation (10) on the problem
sheet, and use your new function G_grad.m.) Create a modified version of
bem_complete.m (called bem_complete4.m) which computes and compares
the BEM and exact values of ∇u(x), rather than the values of u(x).

[The exact expression for ∇u is ∇u(x) =

[
ik

4
H

(1)
1 (kr)− ckJ1(kr)

]
r where

r = |x|, r = x/r, and c = i
4
H

(1)
0 (kR)/J0(kR).]

7


